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Abstract A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are
oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT)
are the most important precursors of SOA originating from forests. The climate impacts from OA are currently
estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We
combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1)
explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase
separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient
data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol
climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter
hygroscopicity framework can introduce significant error when quantifying the climate effects of organic
aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its
molecular composition, including currently underexplored anthropogenic and marine OA sources.

Plain Language Summary The interaction of airborne particulate matter (“aerosols”) with water is
of critical importance for processes governing climate, precipitation, and public health. It also modulates the
delivery and bioavailability of nutrients to terrestrial and oceanic ecosystems. We present a microphysical
explanation to the humidity-dependentwater uptake behavior of organic aerosol, which challenges the highly
simplified theoretical descriptions used in, e.g., present climate models. With the comprehensive analysis of
laboratory data using molecular models, we explain the microphysical behavior of the aerosol over the range
of humidity observed in the atmosphere, in a way that has never been done before. We also demonstrate the
presence of these phenomena in the ambient atmosphere from data collected in the field. We further show,
using two state-of-the-art climate models, that misrepresenting the water affinity of atmospheric organic
aerosol can lead to significant biases in the estimates of the anthropogenic influence on climate.
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1. Introduction

An incomplete understanding of natural aerosols hampers the capability of the scientific community to quan-
tify anthropogenic impacts on the global climate [Stocker et al., 2013; Carslaw et al., 2013]. Forests emit
aerosol particles and their gaseous precursors, which influence atmospheric radiative transfer and cloud
microphysics. The contribution of these effects to the global radiative budget is still highly uncertain and sub-
ject to intense debate [e.g., Seinfeld et al., 2016], in large part due to insufficient knowledge of the emissions
and molecular processes involving atmospheric aerosol particles. Furthermore, creating simple yet robust
and physicochemically sound descriptions of organic aerosol (OA) is essential for advancing the knowledge
on aerosol-climate interactions and quantifying the human influence on climate.

Aerosol particles originating from forest emissions contain primarily organic molecules, and a large fraction of
this particulate mass is secondary, formed through the oxidation of volatile organic compounds (VOCs).
Forests are one of the main sources of global OA, which makes up 20–90% of submicron particulate mass
over the continents [Jimenez et al., 2009]. Different types of trees emit different mixtures of VOCs, resulting
in differences in the SOA composition [Guenther et al., 2012; Hu et al., 2015]. While the SOA profile over con-
iferous forests is dominated by monoterpene (MT) oxidation products, the SOA from broad-leaved trees are
dominated by compounds formed through the photooxidation of isoprene (IP). The molecular composition
of biogenic SOA is complex [Goldstein and Galbally, 2007] and dynamic due to chemical transformation in the
atmosphere over timescales ranging fromminutes to days [Jimenez et al., 2009]. This atmospheric processing
modifies the SOA composition [Hu et al., 2015], polarity, carbon number, oxidation state [Kroll et al., 2011],
volatility [Bilde et al., 2015], and phase state [Virtanen et al., 2010].

Interactions of aerosol particles with water vapor are important for determining the behavior and effects of
atmospheric aerosol, given the comparably high abundance of water in the air and its importance for various
processes in the Earth system. Specifically, hygroscopicity is defined as the extent to which an aerosol particle
takes up water when exposed to a given relative humidity (RH). If RH is increased above water saturation
(RH > 100%), the particles may act as cloud condensation nuclei (CCN) [Kohler, 1936; Raymond and Pandis,
2002] and form new cloud droplets influencing the radiative properties and lifetime of clouds [Lohmann
and Feichter, 2005]. Aerosol hygroscopicity and CCN activation are often represented with a single, semi-
empirical hygroscopicity parameter κ at both subsaturated and supersaturated RH [Petters and Kreidenweis,
2007]. Laboratory data indicate, however, that the κ parameters measured for SOA (κSOA) at subsaturated
(RH< 100%) and supersaturated (RH> 100%) conditions can vary substantially [Prenni et al., 2007;Wex et al.,
2009; Pajunoja et al., 2015; Hodas et al., 2016]. On the other hand, many current climate models represent the
organic aerosol fraction with one to two surrogate species with specific molecular properties [Tsigaridis et al.,
2014]. This is disparate to the detailed model description of the hygroscopicity and CCN activation of inor-
ganic aerosols [Baklanov et al., 2014].

In this work we present a microphysical explanation of the behavior of the RH-dependent water affinity of
biogenic SOA produced from IP and α-pinene (as a representative MT species) oxidation. The proposed
mechanistic picture is based on the synthesis and interpretation of a comprehensive set of laboratory and
field data using thermodynamic models that allow accounting for differences in the aerosol composition.
Finally, we put the results into a larger context through studying the sensitivity of climate forcing reproduced
by two state-of-the-art climate models to the water affinity of OA.

2. Materials and Methods

We used two theoretical approaches with varying level of complexity to describe the RH-dependent water
uptake and CCN activation behavior of the IP- and MT-derived SOA. The first, more simplistic, approach
was based on a description of limited solubility of the SOA components using solubility distributions [Hilal
et al., 1995; Riipinen et al., 2015] coupled with treatment of adsorption using the Frenkel-Halsey-Hill adsorp-
tion theory [Frenkel, 1946; Halsey, 1948; McDonald, 1964; Jiusto and Kocmond, 1968; Hill, 1949; Sorjamaa and
Laaksonen, 2007; Kumar et al., 2009, 2011a, 2011b] (see supporting information (SI) for details). The limited
solubility in water is a manifestation of nonideality [Prausnitz et al., 1964]. In our first-order approximations,
this was the only consequence of nonideality taken into account in the water-uptake calculations (see section
3 in SI) predicted by the SPARC prediction tool [Hilal et al., 1995; Wania et al., 2014; Riipinen et al., 2015],
assuming that water and organic phase otherwise behave as ideal mixtures, yielding Γw = 1. To explore
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the nonideal behavior further, we used the multiphase system online property prediction (UManSysProp) for
calculating Γw in organic solution droplets. UManSysProp (http://vm-woody009.itservices.manchester.ac.
uk/index) is an online application developed for calculating the properties of individual molecules, mixtures
(organic, inorganic, or mixed organic-inorganic), and aerosol particles. For calculating activity coefficients in
aqueous solutions, the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC)
model [Zuend et al., 2010; Zuend and Seinfeld, 2012] is applied within UManSysProp. In the second, more com-
prehensive approach, a gas-particle partitioning model based on AIOMFAC and the pure compound liquid-
state saturation vapor pressure prediction model EVAPORATION (Estimation of Vapour Pressure of Organics,
Accounting for Temperature, Intramolecular, and Non-additivity effects) [Compernolle et al., 2011], available
online at http://tropo.aeronomie.be/models/evaporation_run.htm, was used. This equilibrium gas-particle
partitioning model includes the prediction of a potential liquid-liquid phase separation (i.e., a liquid-liquid
equilibrium state) in the liquid particle mixture [Zuend and Seinfeld, 2013]. The model was run similar to
the case studies by Zuend et al. [2010] to account for the concurrent water uptake and partitioning of semi-
volatile organic compounds contributing to the effective hygroscopic growth at a given RH [Surratt et al.,
2010; Kristensen et al., 2013; Zhang et al., 2015].

To visually observe the phase state behavior of the two SOA types, optical images of micrometer-scale SOA
particles were used [Bertram et al., 2011]. Such images for SOA derived from ozonolysis of α-pinene have
been reported previously [Renbaum-Wolff et al., 2016]. Optical images of SOA particles derived from photo-
oxidation of isoprene are described here: Isoprene-derived SOA was generated by the photooxidation of
isoprene in an oxidation flow reactor [Kang et al., 2007; Lambe et al., 2011; Liu et al., 2015]. Table S1 lists
the experimental conditions for SOA production. At the exit of the oxidation flow reactor, particles were
collected on a hydrophobic glass slide using a single stage impactor or electrostatic precipitator
[Renbaum-Wolff et al., 2016]. After collection, the hydrophobic glass slide was inserted into a temperature
and relative humidity controlled flow cell coupled to an optical microscope (Zess Axiotech, 50× objective).
RH was controlled within the cell by varying the ratio of a dry and humidified N2 flow with the total flow rate
of ~1200 sccm. The RH was measured using a hygrometer with a chilled mirror sensor (General Eastern,
Canada), which was calibrated using deliquescence RH for pure ammonium sulfate particles (uncertainty
of the RH: ±1.0%). After the glass slide containing the SOA particles was inserted into the flow cell, the
SOA particles were equilibrated at ~100% RH for 15 min, and then the RH was scanned from ~100% to
~0% RH and subsequently ~0% to ~100% RH at a rate of 0.1–0.5% RH min�1. During the humidity cycles,
optical images of the SOA particles were recorded every 5–10 s using a CCD camera. All experiments were
performed at constant temperature of 290 ± 1 K. From the optical images, the presence of one or multiple
phases could be identified.

To investigate the RH-dependent water uptake and CCN behavior of ultrafine SOA particles, we used the
laboratory data set from Pajunoja et al. [2015] for particles formed from the photooxidation of isoprene
(C5H8, IP) or ozonolysis of α-pinene (C10H16, MT). In both cases (MT and IP), SOA was formed in a continuous
flow Potential Aerosol Mass flow reactor [Kang et al., 2007; Liu et al., 2015]. The reactor was operated in
continuous flow mode with a mean residence time of approximately 100 s and a humidified carrier gas
(RH ~ 30%) containing a synthetic mixture of N2 and O2. Trace levels of SOA precursors (isoprene or α-pinene)
were mixed with the carrier gas at the inlet of the reactor. SOA precursors react with O3 or OH radicals inside
the reactor, after which low-vapor pressure oxidation products homogenously nucleated to form SOA parti-
cles. The sample flowwas then dried with a diffusion dryer prior to composition and hygroscopicity measure-
ments with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; Aerodyne Research,
Inc.) [DeCarlo et al., 2006], a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), and a Cloud
Condensation Nuclei counter (CCNc; Droplet Measurement Technologies) [Brechtel and Kreidenweis, 2000;
Roberts and Nenes, 2005; Paramonov et al., 2013; Guo et al., 2015]. In Pajunoja et al. [2015], the elemental
oxygen-to-carbon ratio (O:C) = 0.45 of α-pinene SOA particles was calculated from HR-ToF-AMS measure-
ments using the Aiken analysis method [Aiken et al., 2008], and O:C = 0.86 of IP-SOA was calculated using
the method introduced in Chen et al. [2011]. Here we apply the revised elemental analysis method
[Canagaratna et al., 2015] to update O:C of α-pinene SOA from 0.45 to 0.56. The hygroscopic growth factors
(HGF) of the SOA particles were measured at varied subsaturated conditions (five RH steps) with the HTDMA,
and the cloud activation properties were measured at liquid water supersaturation (SS = 0.1–1.0%) with the
CCNc. An initial dry particle mobility diameter of 100 nm was selected in both instruments.
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Ambient measurements used in this study comprised comprehensivemeasurement campaigns carried out in
the Southeastern US, Centreville, Alabama (32.90289°N, 87.24968°W, 126 m above sea level (asl)) [Hu et al.,
2015; Xu et al., 2015], and in Northern Europe, Finland, Hyytiälä (61.84524°N, 24.28883°E, 181 m asl) in the
summer of 2013. Both sites are rural environments with dominance of biogenic emission sources. The air-
borne particle population was characterized by size and composition with a Differential Mobility Particle
Sizer and HR-ToF-AMS (see SI for details), respectively. Moreover, the hygroscopic properties of the particles
were measured both at subsaturated and supersaturated conditions with HTDMA and CCNc instruments,
respectively. Humidity control in the HTDMA and CCNc were similar to the laboratory measurements, but
the water saturations in the setups were fixed to RH = 90% and SS = 0.2%, respectively. Only time periods
with OA mass fraction (based on the AMS analysis) of the particles forg ≥ 0.6 were used in the analysis.
Similar analysis methods of hygroscopicity were used as in previous studies [Pajunoja et al., 2016; Hong
et al., 2014; Cerully et al., 2015]. The mixture’s effective hygroscopicity parameter κ was derived for the
organic-dominated (forg ≥ 0.6) ambient particles (κHGF from HTDMA and κCCN from CCNc) and also for the
organic fraction of the particles (κHGF,org and κCCN,org). κ for the organic fraction was derived using a mixing
rule [Petters and Kreidenweis, 2007] and by (1) assuming AMS PM1 mass fractions to be representative for
100 nm particles; (2) categorizing inorganic fraction into sulfuric acid (SA), ammonium sulfate (AS), and
ammonium bisulfate (ABS) [Nenes et al., 1998]; and (3) using published κ and density values for the inorganic
species [Pajunoja et al., 2016]. Effect of inlet RH on the amount of residual water (due to highly hygroscopic
SA) in the “dry” particle phase was taken into account. In the Alabama measurements, the inlet RH after the
drier stage was kept around 30% RH, and κSA,30% = 0.75 was used in the calculations. In Hyytiälä the inlet RH
was steadily<5% RH, and κ of SA was replaced by κSA,dry = 1.18. In both cases the inlet RH was low enough to
dry AS and ABS below their efflorescence RH.

To explore the sensitivity of aerosol-climate interactions to the description of OA water uptake and CCN acti-
vation, we set up simulations with two global models, both of which provided input for the Climate Model
Intercomparison Project 5 (CMIP5) used by the IPCC in their recent AR5 assessment report [Stocker et al.,
2013]. NorESM is a fully coupled atmosphere-ocean general circulation model [Kirkevåg et al., 2013;
Bentsen et al., 2013; Iversen et al., 2013]. In this study we used the atmospheric component driven by pre-
scribed, observation based, present-day sea surface temperatures, similar to the standard model setup used
by Kirkevåg et al. [2013]. NorESM includes a description of the life cycle of atmospheric aerosol particles, and
as a default, the aerosols affect radiation, clouds and climate interactively (“online”) during the simulation.
NorESM takes into account climate effects of organic, black carbon, sulfate, dust, and sea salt aerosols. The
aerosol description is based on production-tagged mass concentrations, internally or externally mixed,
described explicitly for each of the different modes of the aerosol size distribution (nucleation, Aitken, accu-
mulation, and coarse mode). Aerosol microphysical properties such as effective dry particle size and aerosol
optical parameters, including the effect of hygroscopic growth, are estimated by use of interpolations in pre-
calculated look-up tables which take ambient RH and a range of process-specific aerosol concentrations from
themodel as input parameters. Aerosol hygroscopic growth for RH< 100% is estimated using similar look-up
tables. Activation of aerosol particles acting as CCN follows the approach of Abdul-Razzak and Ghan [2000],
and the cloudmicrophysics are simulated with a two-moment scheme. The aerosol direct and indirect effects
on the Earth’s radiation budget may be estimated individually via parallel calls to the radiative transfer code.
The model sensitivity to hygroscopicity was studied both with or without interactions between aerosols and
meteorological conditions (see Table S3 for a list of simulations). In the case without aerosol-cloud and
aerosol-radiation interactions, the meteorology was identical in all runs (termed also as “offline” as opposed
to “online” simulations). The model was set up with a horizontal resolution of 1.9° × 2.5° and 26 levels in the
vertical. Besides the simulations with the NorESM, we also used the global aerosol-chemistry climate model
ECHAM-HAMMOZ (version echam 6.1-ham2.2-moz0.9), referred to as ECHAM6-HAM2 hereon, to study the
sensitivity of the present-day modeled climate to OA hygroscopicity. The aerosol-cloud-climate interactions
are based on the aerosol module HAM2 [Zhang et al., 2012] coupled to the atmospheric general circulation
model ECHAM6 [Stevens et al., 2013]. HAM2 uses the two-moment M7 modal aerosol microphysics scheme
[Vignati et al., 2004] and a two-moment cloud microphysics scheme that includes prognostic equations for
the cloud droplet and ice crystal number concentrations as well as cloud water and cloud ice [Lohmann
and Hoose, 2009]. The activation of aerosol particles into cloud droplets is parameterized by Barahona
et al. [2010]. HAM2 calculates the global evolution of five aerosol species: sulfate, organic matter, black
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carbon, sea salt, and dust. These species are the constituents of both internally and externally mixed aerosol
particles whose size distribution is represented by seven unimodal log-normal distributions. These seven
modes describe four size classes (nucleation, Aitken, accumulation, and coarse) and two hygroscopic
classes (hydrophobic and hydrophilic). Simulations were performed at 1.9° × 1.9° spectral resolution using
31 vertical levels. Two 5-year present-day (years 2006–2010 with 1 month spin-up) simulations nudged to
reanalyzed meteorology from ERA-Interim [Dee et al., 2011] and the corresponding emission inventories as
the ones used within NorESM (see Table S4) were conducted: one assuming a κOA of 0.05 and another
with a κOA of 0.15.

3. Results and Discussion

Our results suggest that the observed differences in κSOA for the biogenic SOA in the subsaturated and
supersatured regimes are related to the solubility and phase state. Optical microscopy images of supermicron
samples of MT- and IP-derived SOA show that the RH-dependent phase behavior of these two SOA types is
different (Figure 1 and Table S1). For the MT-SOA a single organic-rich phase was observed at <95% RH, but
at ~95% RH, liquid-liquid phase separation occurred to form two phases: an organic-rich and a water-rich
phase (Figure 1b) [Song et al., 2012; Krieger et al., 2012; You et al., 2014; Renbaum-Wolff et al., 2016; Petters et al.,
2016]. For IP-SOA, one single phase was observed over the entire RH range (Figure 1a). This difference in the
phase state of IP- and MT-derived SOA particles is also consistent with different RH-dependent hygroscopic
properties of submicron particles from these two precursors (see Figure 2). Laboratory-generated 100 nm
particles derived from the ozonolysis of α-pinene [Pajunoja et al., 2015] with an oxygen-to-carbon ratio (O:C)
of 0.56 show a marked difference in κOA between subsaturated and supersaturated conditions (denoted here
as ΔκOA), while corresponding particles of IP-derived SOA (produced through photooxidation with an O:C of

Figure 1. Optical images of micrometer scale SOA particles with increasing relative humidity. (a) Isoprene-derived SOA for
mass concentrations of 70–80 μg m�3 and (b) α-pinene-derived SOA for a mass concentration of 110 μg m�3 [Figure 1a is
from the current study while Figure 1b was reproduced from Renbaum-Wolff et al., 2016]. Note that the light gray circles
at the center of the particles are due to an optical effect caused by the hemispherical shape of the particles deposited on
a substrate. Illustrations are shown below the images for clarity. Green: organic-rich phase. Blue: water-rich phase. The
scale bar represents 20 μm.
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0.86) show a considerably smaller differ-
ence. The laboratory results are consis-
tent with κOA values measured at two
field sites (see also SI), namely the
SOAS site in Alabama, US (VOC profile
dominated by IP albeit with a significant
MT contribution) [Kaiser et al., 2016] and
the SMEAR II station in Hyytiälä, Finland
(VOC profile dominated by MT) [Hakola
et al., 2003; Raatikainen et al., 2010;
Finessi et al., 2012], as well as with values
reported previously in the literature for
SOA in similar environments [Pöhlker
et al., 2016]. We can explain this beha-
vior using two independent thermody-
namic models with varying levels of
complexity (see Figures 2 and S1–S8).
Both models indicate that the key pro-
cess explaining the large ΔκOA in the
case of the MT system is the formation
of a new aqueous phase in the particles
between ~95% and 100% RH, in line
with the fraction of OA dissolved. At
supersaturation both IP- and MT-
derived SOA behave as nearly comple-
tely soluble in water in terms of the high
κOA values observed, with contributions
from potential surface tension reduc-
tions as well [Ruehl et al., 2016]. The
thermodynamics and related phase
diagrams can differ between super-
micron and submicron sized particles
due to the increasing importance of
surface/interface energy contributions
at smaller sizes, leading to relative pre-
ference of the liquid phase at the smal-
ler particle sizes [Veghte et al., 2013,
2014; Werner et al., 2016; Altaf et al.,
2016]. Our results, particularly the
agreement between the microscopy
images and the water uptake of the
considerably smaller 100 nm particles,
suggest however that phase transition
processes govern the water interactions
for also the smaller particles in the case

of MT-derived SOA. Hygroscopicity and CCN activity of organic aerosol increases with increasing O:C
[Jimenez et al., 2009; Pajunoja et al., 2015]. As the O:C of the MT-SOA increases, its hygroscopic behavior
becomes increasingly similar to the more oxidized IP-SOA and ΔκOA decreases [Pajunoja et al., 2015].

Bulk-to-surface partitioning [Ruehl et al., 2016] and gas-particle partitioning of semivolatile gas-phase species
(co-condensation) [Topping et al., 2011] are two alternative mechanisms that have been proposed to explain
the ΔκOA between subsaturated and supersaturated conditions for SOA. However, these mechanisms are not
needed to explain the observed ΔκOA between 90% RH and supersaturation when the phase separation
effects discussed above are considered. Furthermore, the observed dependencies on the oxidation state,

Figure 2. The RH dependencies of the effective hygroscopicity parameter
κOA,eff for isoprene- and monoterpene-derived SOA. (a) The hygroscopi-
city parameter κOA,eff for laboratory-generated 100 nm particles from IP
photooxidation [blue diamonds, O:C = 0.89; Pajunoja et al., 2015], organic
aerosol sampled at the SOAS site in Alabama (red squares, O:
C = 0.63 ± 0.06), and as predicted using two state-of-the-art thermody-
namic models (SPARC and AIOMFAC). The SPARC equilibrium calculations
are presented for a case accounting for the solubility of the SOA
components only (dashed lines) as well as a case including also treatment
of adsorptive water uptake and nonideality of the aqueous phase. The
AIOMFAC + EVAPORATION calculations account for mixture nonideality, a
potential liquid-liquid phase separation, coupled gas-particle partitioning
of semivolatile organic vapors and water, and a mass-transfer correction
for semisolid organic particles at low RH. (b) Same as Figure 2a but for MT
ozonolysis SOA [red diamonds, O:C = 0.56; Pajunoja et al., 2015] and
organic aerosol sampled at the SMEAR II station in Hyytiälä, Finland (blue
squares, O:C = 0.63 ± 0.06). For details of the experiments and the model
calculations, see SI.
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VOC precursor, and RH support the idea of dissolution and/or liquid-liquid phase separation as the key
phenomena to explain ΔκOA. As the oxidation state of SOA compounds increases, their water-solubility
also increases due to an increasing number of polar functional groups, resulting in an increase in the
associated κOA of the mixture, consistent with our observations. Surface activity of organic species, on the
other hand, is expected to increase with increasing hydrophobicity of the molecules, which would result in
an opposite dependence of the effective κOA (inferred from laboratory data assuming a constant surface
tension of pure water, see SI) on oxidation state than observed at high RH [Prisle et al., 2012]. Significant
variations in OA mass concentrations due to changes in gas-particle partitioning with RH, on the other
hand, are expected to be more substantial for IP-SOA with more semivolatile compounds than the MT
counterpart (Tables S2 and S3). Constraining the theoretical models of the hygroscopic growth to match
experimental data becomes increasingly challenging at RH below 90%, requiring consideration of
processes such as adsorptive water uptake, dynamic gas-particle partitioning of the semivolatile vapors,
particle-phase mass transfer limitations, or considerable nonideality of the liquid phases with decreasing RH.

Previous studies have suggested that water affinity might play only a minor role in determining the climate
impact of OA [Morales Betancourt and Nenes, 2014]. The results shown in Figure 3 add a further dimension to
the discussion. We used two climate models, namely the atmospheric module of NorESM [Kirkevåg et al.,
2013] and ECHAM6-HAM2 [Zhang et al., 2012], to study the sensitivity of the Earth’s radiative budget to
assumptions about organic aerosol hygroscopicity and CCN activity. Both models represent OA with single
hygroscopicity, but NorESM has a significantly higher global OA mass concentration (average total OA load-
ing of nearly 4 Tg), while ECHAM6-HAM2 (average OA loading of about 1 Tg) represents a lower OA loading

Figure 3. Sensitivities of two CMIP5 climate models to κOA. (a) Difference in the top-of-the-atmosphere (TOA) radiative flux in NorESM model simulations of the
present-day atmosphere (22 years simulated) for κOA varying between 0.05 and 0.15 (see SI). (b) Difference in the top-of-the-atmosphere radiative flux in the
ECHAM6-HAM2model simulations (7 years simulated) of the present-day atmosphere for κOA varying between 0.05 and 0.15 (see SI). (c) TOA radiative flux difference
for κOA varying between 0.05 and 0.15 as a function of RH for NorESM (left axis, black symbols) and ECHAM (right axis, red symbols). Only grid points over land
and outside of the polar regions have been considered. (d) The contribution of the direct versus indirect aerosol effects to the model sensitivity for NorESM (left axis,
black symbols) and ECHAM (right axis, red symbols). Crosses refer to mean and dots to median values.

Geophysical Research Letters 10.1002/2017GL073056

RASTAK ET AL. RH-DEPENDENT WATER-AFFINITY OF BSOA 5173



among the CMIP5 models [Tsigaridis et al., 2014]. Both models have an interactive representation of aerosol
and cloud processes but differ in the microphysical parameterizations of the aerosol size distribution and
cloud hydrometeor number concentrations. NorESM simulates a global average difference of about
�1.02 W m�2 in aerosol radiative effects between cases with κOA values of 0.15 and 0.05 (Figure 3). This sen-
sitivity to κOA is substantial, considering that the estimated overall climate forcing of anthropogenic aerosol
particles during the industrial period is of the order of �1 W m�2 [Stocker et al., 2013]. ECHAM6-HAM2, on
the other hand, simulates only about one fourth of the NorESM sensitivity to κOA (difference of�0.25 Wm�2

for κOA values of 0.15 versus 0.05) [Morales Betancourt and Nenes, 2014]. The sensitivity in both models is
highly regional, being most pronounced over tropical regions (Figures 3a and 3b), and the effects of κOA
are largest for RHs over 60%. The indirect effect of aerosol particles on cloud properties dominates the sen-
sitivity as compared to the direct aerosol-radiation effect (Figures 3c, 3d and S9), but the magnitude of the
sensitivity is probably driven by the overall OA loading present in the model.

Given the large uncertainties in the OA loadings in the CMIP models [Tsigaridis et al., 2014] with underestima-
tion of OA particularly in urban andmarine environments, the global modeling results suggest that constrain-
ing the OA water affinity might be more important than previously thought. It is certainly not the only source
of uncertainty in climate models, and efforts for improving the spatial model resolution and description of
atmospheric dynamics (e.g., updraft velocities and entrainment) need to be pushed forward in parallel with
aerosol and cloud microphysics. Besides knowing the source strength of the emissions of various OA types
into the atmosphere, improving the OA life cycle requires understanding of the removal mechanisms as
well—which, in turn, depend on the OA water affinity. Acknowledging the large variability in the κOA values
reported for laboratory and field data on various organic aerosol types [Lathem et al., 2013], our results
suggest that representing all OA with one constant hygroscopicity parameter can introduce considerable
uncertainties to calculations of the climate impacts of OA. Instead, a self-consistent representation of the
climate impacts of OA should rely on an oxidation-state-dependent water affinity approach, and ideally this
approach would be coupled to both surface phenomena [Cheng et al., 2015; Ruehl et al., 2016] and a dynami-
cally evolving volatility representation [Heald et al., 2010].

References
Abdul-Razzak, H., and S. J. Ghan (2000), A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105(D5),

6837–6844, doi:10.1029/1999JD901161.
Aiken, A. C., et al. (2008), O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight

aerosol mass spectrometry, Environ. Sci. Technol., 42(12), 4478–4485.
Altaf, M. B., A. Zuend, and M. A. Freedman (2016), Role of nucleation mechanism on the size dependent morphology of organic aerosol,

Chem. Commun., 52, 9220–9223.
Baklanov, A., et al. (2014), Online coupled regional meteorology chemistry models in Europe: Current status and prospects, Atmos. Chem.

Phys., 14, 317–398, doi:10.5194/acp-14-317-2014.
Barahona, D., R. E. L. West, P. Stier, S. Romakkaniemi, H. Kokkola, and A. Nenes (2010), Comprehensively accounting for the effect of giant CCN

in cloud activation parameterizations, Atmos. Chem. Phys., 10, 2467–2473, doi:10.5194/acp-10-2467-2010.
Bentsen, M., et al. (2013), The Norwegian Earth System Model, NorESM1-M. Part 1: Description and basic evaluation, Geosci. Model Dev., 6,

687–720, doi:10.5194/gmd-6-687-2013.
Bertram, A. K., S. T. Martin, S. J. Hanna, M. L. Smith, A. Bodsworth, Q. Chen, M. Kuwata, A. Liu, Y. You, and S. R. Zorn (2011), Predicting the

relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic
material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic
component, Atmos. Chem. Phys., 11, 10,995–11,006, doi:10.5194/acp-11-10995-2011.

Bilde, M., et al. (2015), Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance:
From dicarboxylic acids to complex mixtures, Chem. Rev., 115(10), 4115–4156.

Brechtel, F. J., and S. M. Kreidenweis (2000), Predicting particle critical supersaturation from hygroscopic growth measurements in the
humidified TDMA. Part I: Theory and sensitivity studies, J. Atmos. Sci., 57, 1854–1871.

Carslaw, K. S., et al. (2013), Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503(7474), 67–71.
Canagaratna, M. R., et al. (2015), Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization,

improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, doi:10.5194/acp-15-253-2015.
Cerully, K. M., A. Bougiatioti, J. R. Hite Jr., H. Guo, L. Xu, N. L. Ng, R. Weber, and A. Nenes (2015), On the link between hygroscopicity, volatility,

and oxidation state of ambient and water-soluble aerosols in the southeastern United States, Atmos. Chem. Phys., 15, 8679–8694,
doi:10.5194/acp-15-8679-2015.

Chen, Q., Y. Liu, N. M. Donahue, J. E. Shilling, and S. T. Martin (2011), Particle-phase chemistry of secondary organic material: Modeled
compared to measured O:C and H:C elemental ratios provide constraints, Environ. Sci. Technol., 45(11), 4763–4770.

Cheng, Y., H. Su, T. Koop, E. Mikhailov, and U. Pöschl (2015), Size dependence of phase transitions in aerosol nanoparticles, Nat. Commun., 6,
5923, doi:10.1038/ncomms6923.

Compernolle, S., K. Ceulemans, and J. F. Müller (2011), EVAPORATION: A new vapour pressure estimation method for organic molecules
including non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11, 9431–9450, doi:10.5194/acp-11-9431-2011.

Frenkel, J. (1946), Kinetic Theory of Liquids, pp. 332–339, Oxford Univ. Press, Oxford.

Geophysical Research Letters 10.1002/2017GL073056

RASTAK ET AL. RH-DEPENDENT WATER-AFFINITY OF BSOA 5174

Acknowledgments
The data presented in the paper will be
available through the Bolin Centre
database (http://bolin.su.se/data/). The
EC H2020 European Research Council
ERC (ERC-StGATMOGAIN-278277 and
ERC-StG-QAPPA-335478) and inte-
grated project 641816 CRESCENDO
Svenska Forskningsrådet Formas
(Swedish Research Council Formas)
(2015-749), Knut och Alice Wallenbergs
Stiftelse (Knut and Alice Wallenberg
Foundation Wallenberg Fellowship
AtmoRemove), Academy of Finland
(grants 272041 and 259005), Natural
Environment Research Council (NERC
grants NE/M003531/1 and
NE/J02175X/1), Norwegian Research
Council (EVA grant 229771), Natural
Sciences and Engineering Research
Council of Canada (NSERC, grant
RGPIN/04315-2014), National Science
Foundation (NSF, grants ATM-1242258,
AGS-1242932, and AGS-1360834), U.S.
Environmental Protection Agency (EPA,
STAR grant R835410), National Oceanic
and Atmospheric Administration
(NOAA, CPO award
538NA10OAR4310102), Electric Power
Research Institute (EPRI, grant
10004734), U.S. Department of Energy
(DOE, grants BER/ASR DE-SC0016559
and DE-SC0012792), Georgia Institute of
Technology, and NordForsk (Nordic
Centre of Excellence eSTICC) are
gratefully acknowledged for funding.
The climate model simulations were
performed on resources provided by
the Swedish National Infrastructure for
Computing (SNIC) at the National
Supercomputing Centre. Benjamin
Murphy is acknowledged for useful
discussions.

https://doi.org/10.1029/1999JD901161
https://doi.org/10.5194/acp-14-317-2014
https://doi.org/10.5194/acp-10-2467-2010
https://doi.org/10.5194/gmd-6-687-2013
https://doi.org/10.5194/acp-11-10995-2011
https://doi.org/10.5194/acp-15-253-2015
https://doi.org/10.5194/acp-15-8679-2015
https://doi.org/10.1038/ncomms6923
https://doi.org/10.5194/acp-11-9431-2011
http://bolin.su.se/data/


DeCarlo, P. F., et al. (2006), Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289.
Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc.,

137(656), 553–597, doi:10.1002/qj.828.
Finessi, E., et al. (2012), Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy, Atmos.

Chem. Phys., 12, 941–959, doi:10.5194/acp-12-941-2012.
Goldstein, A. H., and I. E. Galbally (2007), Known and unexplored organic constituents in the Earth’s atmosphere, Environ. Sci. Technol., 41(5),

1514–1521.
Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang (2012), The Model of Emissions of Gases and

Aerosols from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions, Geosci. Model Dev.,
5, 1471–1492, doi:10.5194/gmd-5-1471-2012.

Guo, H., et al. (2015), Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211–5228, doi:10.5194/
acp-15-5211-2015.

Hakola, H., V. Tarvainen, T. Laurila, V. Hiltunen, H. Hellén, and P. Keronen (2003), Seasonal variation of VOC concentrations above a boreal
coniferous forest, Atmos. Environ., 37(12), 1623–1634.

Halsey, G. (1948), Physical adsorption on non-uniform surfaces, J. Chem. Phys., 16, 931–937, doi:10.1063/1.1746689.
Hilal, H., S. W. Karickhoff, and L. A. Carreira (1995), A rigorous test for SPARC’s chemical reactivity models: Estimation of more than 4300

ionization pKas, Quant. Struct.-Act. Relat., 14, 348–355, doi:10.1002/qsar.19950140405.
Hill, T. L. (1949), Physical adsorption and the free volume model for liquids, J. Chem. Phys., 17, 590.
Hodas, N., A. Zuend, K. Schilling, T. Berkemeier, M. Shiraiwa, R. C. Flagan, and J. H. Seinfeld (2016), Discontinuities in hygroscopic growth

below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols, Atmos. Chem. Phys., 16,
12,767–12,792, doi:10.5194/acp-16-12767-2016.

Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A
simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi:10.1029/
2010GL042737.

Hong, J., et al. (2014), Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during
the summer of 2010, Atmos. Chem. Phys., 14, 4733–4748, doi:10.5194/acp-14-4733-2014.

Hu, W. W., et al. (2015), Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from
aerosol mass spectrometer measurements, Atmos. Chem. Phys., 15, 11,807–11,833, doi:10.5194/acp-15-11807-2015.

Iversen, T., et al. (2013), The Norwegian earth system model, NorESM1-M - part 2: Climate response and scenario projections, Geosci. Model
Dev., 6, 389–415, doi:10.5194/gmd-6-389-2013.

Jimenez, J. L., et al. (2009), Evolution of organic aerosols in the atmosphere, Science, 326(5959), 1525–1529.
Jiusto, J. E., and W. C. Kocmond (1968), Condensation on nonhygroscopic particles, J. Rech. Atmos., 3, 19–24.
Kaiser, J., et al. (2016), Speciation of OH reactivity above the canopy of an isoprene-dominated forest, Atmos. Chem. Phys., 16, 9349–9359,

doi:10.5194/acp-16-9349-2016.
Kang, E., M. J. Root, D. W. Toohey, and W. H. Brune (2007), Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7,

5727–5744.
Kirkevåg, A., et al. (2013), Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M, Geosci. Model Dev., 6, 207–244,

doi:10.5194/gmd-6-207-2013.
Krieger, U. K., C. Marcolli, and J. P. Reid (2012), Exploring the complexity of aerosol particle properties and processes using single particle

techniques, Chem. Soc. Rev., 41, 6631–6662.
Kristensen, K., et al. (2013), Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols, Atmos. Chem.

Phys., 13(7), 3763–3776.
Kroll, J. H., et al. (2011), Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3(2),

133–139.
Kohler, H. (1936), The nucleus in the growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152–1161.
Kumar, P., I. N. Sokolik, and A. Nenes (2009), Parameterization of cloud droplet formation for global and regional models: Including

adsorption activation from insoluble CCN, Atmos. Chem. Phys., 9(7), 2517–2532.
Kumar, P., I. N. Sokolik, and A. Nenes (2011a), Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional

dust samples and minerals, Atmos. Chem. Phys., 11(16), 8661–8676.
Kumar, P., I. N. Sokolik, and A. Nenes (2011b), Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh

unprocessed regional dust samples and minerals, Atmos. Chem. Phys., 11, 3527–3541, doi:10.5194/acp-11-3527-2011.
Lambe, A., T. Onasch, P. Massoli, D. Croasdale, J. Wright, A. Ahern, L. Williams, D. Worsnop, W. Brune, and P. Davidovits (2011), Laboratory

studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized
primary organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913–8928.

Lathem, T. L., A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, M. J. Cubison, A. Hecobian, J. L. Jimenez, R. J. Weber, B. E. Anderson, and A. Nenes
(2013), Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008, Atmos. Chem. Phys., 13(5),
2735–2756.

Liu, P. F., N. Abdelmalki, H. M. Hung, Y. Wang, W. H. Brune, and S. T. Martin (2015), Ultraviolet and visible complex refractive indices of
secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene, Atmos. Chem. Phys., 15,
1435–1446, doi:10.5194/acp-15-1435-2015.

Lohmann, U., and J. Feichter (2005), Global indirect aerosol effects: A review, Atmos. Chem. Phys., 5, 715–737, doi:10.5194/acp-5-715-2005.
Lohmann, U., and C. Hoose (2009), Sensitivity studies of different aerosol indirect effects in mixed-phase clouds, Atmos. Chem. Phys., 9,

8917–8934, doi:10.5194/acp-9-8917-2009.
McDonald, J. E. (1964), Cloud nucleation on insoluble particle, J. Atmos. Sci., 21, 109–116.
Morales Betancourt, R., and A. Nenes (2014), Understanding the contributions of aerosol properties and parameterization discrepancies to

droplet number variability in a global climate model, Atmos. Chem. Phys., 14(9), 4809–4826.
Nenes, A., S. N. Pandis, and C. Pilinis (1998), ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic

aerosols, Aquat. Geochem., 4(1), 123–152.
Pajunoja, A., et al. (2015), Adsorptive uptake of water by semisolid secondary organic aerosols, Geophys. Res. Lett., 42, 3063–3068,

doi:10.1002/2015GL063142.
Pajunoja, A., W. Hu, Y. J. Leong, N. F. Taylor, P. Miettinen, B. B. Palm, S. Mikkonen, D. R. Collins, J. L. Jimenez, and A. Virtanen (2016), Phase state

of ambient aerosol linked with water uptake and chemical aging in the southeastern US, Atmos. Chem. Phys., 16, 11,163–11,176.

Geophysical Research Letters 10.1002/2017GL073056

RASTAK ET AL. RH-DEPENDENT WATER-AFFINITY OF BSOA 5175

https://doi.org/10.1002/qj.828
https://doi.org/10.5194/acp-12-941-2012
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.5194/acp-15-5211-2015
https://doi.org/10.5194/acp-15-5211-2015
https://doi.org/10.1063/1.1746689
https://doi.org/10.1002/qsar.19950140405
https://doi.org/10.5194/acp-16-12767-2016
https://doi.org/10.1029/2010GL042737
https://doi.org/10.1029/2010GL042737
https://doi.org/10.5194/acp-14-4733-2014
https://doi.org/10.5194/acp-15-11807-2015
https://doi.org/10.5194/gmd-6-389-2013
https://doi.org/10.5194/acp-16-9349-2016
https://doi.org/10.5194/gmd-6-207-2013
https://doi.org/10.5194/acp-11-3527-2011
https://doi.org/10.5194/acp-15-1435-2015
https://doi.org/10.5194/acp-5-715-2005
https://doi.org/10.5194/acp-9-8917-2009
https://doi.org/10.1002/2015GL063142


Paramonov, M., P. P. Aalto, A. Asmi, N. Prisle, V.-M. Kerminen, M. Kulmala, and T. Petäjä (2013), The analysis of size-segregated cloud
condensation nuclei counter (CCNC) data and its implications for cloud droplet activation, Atmos. Chem. Phys., 13(20), 10,285–10,301.

Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus
activity, Atmos. Chem. Phys., 7(8), 1961–1971.

Petters, M. D., S. M. Kreidenweis, and P. J. Ziemann (2016), Prediction of cloud condensation nuclei activity for organic compounds using
functional group contribution methods, Geosci. Model Dev., 9, 111–124, doi:10.5194/gmd-9-111-2016.

Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann (2007), Cloud droplet activation of secondary organic aerosol,
J. Geophys. Res., 112, D10223, doi:10.1029/2006JD007963.

Prisle, N. L., N. Ottosson, G. Öhrwall, J. Söderström, M. Dal Maso, and O. Björneholm (2012), Surface/bulk partitioning and acid/base speciation
of aqueous decanoate: Direct observations and atmospheric implications, Atmos. Chem. Phys., 12, 12,227–12,242, doi:10.5194/
acp-12-12227-2012.

Prausnitz, J. M., R. N. Lichtenthaler, and E. Gomez de Azevedo (1964), Molecular Thermodynamics of Fluid-Phase Equilibria, pp. 213–305,
Prentice Hall, Upper Saddle River, N. J.

Pöhlker, M. L., et al. (2016), Long-term observations of atmospheric aerosol, cloud condensation nuclei concentration and hygroscopicity in
the Amazon rain forest – Part 1: Size-resolved characterization and new model parameterizations for CCN prediction, Atmos. Chem. Phys.
Discuss., doi:10.5194/acp-2016-519.

Raatikainen, T., P. Vaattovaara, P. Tiitta, P. Miettinen, J. Rautiainen, M. Ehn, M. Kulmala, A. Laaksonen, and D. R. Worsnop (2010),
Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer, Atmos. Chem.
Phys., 10, 2063–2077, doi:10.5194/acp-10-2063-2010.

Raymond, T. M., and S. N. Pandis (2002), Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107(D4), 4787,
doi:10.1029/2002JD002159.

Renbaum-Wolff, L., M. Song, C. Marcolli, Y. Zhang, P. F. Liu, J. W. Grayson, F. M. Geiger, S. T. Martin, and A. K. Bertram (2016), Observations and
implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis
without inorganic salts, Atmos. Chem. Phys., 16(12), 7969–7979.

Riipinen, I., N. Rastak, and S. N. Pandis (2015), Connecting the solubility and CCN activation of complex organic aerosols: A theoretical study
using solubility distributions, Atmos. Chem. Phys., 15(11), 6305–6322.

Roberts, C. G., and A. Nenes (2005), A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol
Sci. Technol., 39, 206–221.

Ruehl, C. R., J. F. Davies, and K. R. Wilson (2016), An interfacial mechanism for cloud droplet formation on organic aerosols, Science, 351(6280),
1447–1450.

Seinfeld, J. H., et al. (2016), Improving our fundamental understanding of the role of aerosol�cloud interactions in the climate system, Proc.
Nat. Acad. Sci. U.S.A., 113(21), 5781–5790.

Song, M., C. Marcolli, U. K. Krieger, A. Zuend, and T. Peter (2012), Liquid-liquid phase separation in aerosol particles: Dependence on O:C,
organic functionalities, and compositional complexity, Geophys. Res. Lett., 39, L19801, doi:10.1029/2012GL052807.

Sorjamaa, R., and A. Laaksonen (2007), The effect of H2O adsorption on cloud drop activation of insoluble particles: A theoretical framework,
Atmos. Chem. Phys., 7(24), 6175–6180.

Stevens, B., et al. (2013), Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5(2), 146–172.
Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (2013), IPCC, 2013: Climate

Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by T. F. Stocker et al., pp. 33–116, Cambridge Univ. Press, Cambridge, U. K.

Surratt, J. D., A. W. H. Chan, N. C. Eddingsaas, M. N. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, and J. H. Seinfeld
(2010), Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proc. Nat. Acad. Sci. U.S.A., 107,
6640–6645.

Topping, D. O., M. H. Barley, and G. McFiggans (2011), The sensitivity of secondary organic aerosol component partitioning to the predictions
of component properties—Part 2: Determination of particle hygroscopicity and its dependence on “apparent” volatility, Atmos. Chem.
Phys., 11(15), 7767–7779.

Tsigaridis, K., et al. (2014), The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14,
10,845–10,895, doi:10.5194/acp-14-10845-2014.

Veghte, D. P., M. B. Altaf, andM. A. Freedman (2013), Size dependence of the structure of organic aerosol, J. Am. Chem. Soc., 135, 16,046–16,049.
Veghte, D. P., B. R. Bittner, and M. A. Freedman (2014), Cryo-transmission electron microscopy imaging of the morphology of submicron

aerosol containing organic acids and ammonium sulfate, Anal. Chem., 86, 2436–2442.
Vignati, E., J. Wilson, and P. Stier (2004), M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models,

J. Geophys. Res., 109, D22202, doi:10.1029/2003JD004485.
Virtanen, A., et al. (2010), An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824–827.
Wania, F., Y. D. Lei, C. Wang, J. P. D. Abbatt, and K.-U. Goss (2014), Novel methods for predicting gas-particle partitioning during the formation

of secondary organic aerosol, Atmos. Chem. Phys., 14, 13189–13204, doi:10.5194/acp-14-13189-2014.
Werner, J., M. Dalirian, M.-M. Walz, V. Ekholm, U. Wideqvist, S. J. Lowe, G. Öhrwall, I. Persson, I. Riipinen, and O. Björneholm (2016), Surface

partitioning in organic–inorganic mixtures contributes to the size-dependence of the phase-state of atmospheric nanoparticles, Environ.
Sci. Technol., 50(14), 7434–7442, doi:10.1021/acs.est.6b00789.

Wex, H., M. D. Petters, C. M. Carrico, E. Hallbauer, A. Massling, G. R. McMeeking, L. Poulain, Z. Wu, S. M. Kreidenweis, and F. Stratmann (2009),
Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1—Evidence from
measurements, Atmos. Chem. Phys., 9(12), 3987–3997.

Xu, L., et al. (2015), Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United
States, Proc. Natl. Acad. Sci. U.S.A., 112, 37–42, doi:10.1073/pnas.1512279112.

You, Y., M. L. Smith, M. Song, S. T. Martin, and A. K. Bertram (2014), Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem., 33(1), 43–77.

Zhang, K., et al. (2012), The global aerosol-climate model ECHAM-HAM, version 2: Sensitivity to improvements in process representations,
Atmos. Chem. Phys., 12, 8911–8949, doi:10.5194/acp-12-8911-2012.

Zhang, X., R. C. McVay, D. D. Huang, N. F. Dalleska, B. Aumont, R. C. Flagan, and J. H. Seinfeld (2015), Formation and evolution of molecular
products in α-pinene secondary organic aerosol, Proc. Nat. Acad. Sci. U.S.A., 112(46), 14,168–14,173.

Zuend, A., and J. H. Seinfeld (2012), Modeling the gas-particle partitioning of secondary organic aerosol: The importance of liquid-liquid
phase separation, Atmos. Chem. Phys., 12(9), 3857–3882.

Geophysical Research Letters 10.1002/2017GL073056

RASTAK ET AL. RH-DEPENDENT WATER-AFFINITY OF BSOA 5176

https://doi.org/10.5194/gmd-9-111-2016
https://doi.org/10.1029/2006JD007963
https://doi.org/10.5194/acp-12-12227-2012
https://doi.org/10.5194/acp-12-12227-2012
https://doi.org/10.5194/acp-2016-519
https://doi.org/10.5194/acp-10-2063-2010
https://doi.org/10.1029/2002JD002159
https://doi.org/10.1029/2012GL052807
https://doi.org/10.5194/acp-14-10845-2014
https://doi.org/10.1029/2003JD004485
https://doi.org/10.5194/acp-14-13189-2014
https://doi.org/10.1021/acs.est.6b00789
https://doi.org/10.1073/pnas.1512279112
https://doi.org/10.5194/acp-12-8911-2012


Zuend, A., and J. H. Seinfeld (2013), A practical method for the calculation of liquid–liquid equilibria in multicomponent organic–water–
electrolyte systems using physicochemical constraints, Fluid Phase Equilib., 337, 201–213.

Zuend, A., C. Marcolli, T. Peter, and J. H. Seinfeld (2010), Computation of liquid-liquid equilibria and phase stabilities: Implications for
RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys., 10, 7795–7820, doi:10.5194/acp-10-7795-2010.

Geophysical Research Letters 10.1002/2017GL073056

RASTAK ET AL. RH-DEPENDENT WATER-AFFINITY OF BSOA 5177

https://doi.org/10.5194/acp-10-7795-2010


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


